Kinetics from nonequilibrium single-molecule pulling experiments.
نویسندگان
چکیده
Mechanical forces exerted by laser tweezers or atomic force microscopes can be used to drive rare transitions in single molecules, such as unfolding of a protein or dissociation of a ligand. The phenomenological description of pulling experiments based on Bell's expression for the force-induced rupture rate is found to be inadequate when tested against computer simulations of a simple microscopic model of the dynamics. We introduce a new approach of comparable complexity to extract more accurate kinetic information about the molecular events from pulling experiments. Our procedure is based on the analysis of a simple stochastic model of pulling with a harmonic spring and encompasses the phenomenological approach, reducing to it in the appropriate limit. Our approach is tested against computer simulations of a multimodule titin model with anharmonic linkers and then an illustrative application is made to the forced unfolding of I27 subunits of the protein titin. Our procedure to extract kinetic information from pulling experiments is simple to implement and should prove useful in the analysis of experiments on a variety of systems.
منابع مشابه
Springs and speeds in free energy reconstruction from irreversible single-molecule pulling experiments.
The nonequilibrium work relation allows for the calculation of equilibrium free energy differences between states based on the exponential average of accumulated work from irreversible transitions. Here, we compare two distinct approaches of calculating free energy surfaces from unidirectional single-molecule pulling experiments: the stiff spring approximation and the Hummer-Szabo method. First...
متن کاملExact low-force kinetics from high-force single-molecule unfolding events.
Mechanical forces play a key role in crucial cellular processes involving force-bearing biomolecules, as well as in novel single-molecule pulling experiments. We present an exact method that enables one to extrapolate, to low (or zero) forces, entire time-correlation functions and kinetic rate constants from the conformational dynamics either simulated numerically or measured experimentally at ...
متن کاملMultidimensional potentials of mean force from biased experiments along a single coordinate.
External biasing forces are often applied to enhance sampling in regions of phase space which would otherwise be rarely observed. While the typical goal of these experiments is to calculate the potential of mean force (PMF) along the biasing coordinate, here I present a method to construct PMFs in multiple dimensions and along arbitary alternative degrees of freedom. A protocol for multidimensi...
متن کاملMultiple-bond kinetics from single-molecule pulling experiments: evidence for multiple NCAM bonds.
The kinetic parameters of single bonds between neural cell adhesion molecules were determined from atomic force microscope measurements of the forced dissociation of the homophilic protein-protein bonds. The analytical approach described provides a systematic procedure for obtaining rupture kinetics for single protein bonds from bond breakage frequency distributions obtained from single-molecul...
متن کاملFree energy reconstruction from nonequilibrium single-molecule pulling experiments.
Laser tweezers and atomic force microscopes are increasingly used to probe the interactions and mechanical properties of individual molecules. Unfortunately, using such time-dependent perturbations to force rare molecular events also drives the system away from equilibrium. Nevertheless, we show how equilibrium free energy profiles can be extracted rigorously from repeated nonequilibrium force ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 85 1 شماره
صفحات -
تاریخ انتشار 2003